A Service-Oriented Peer-to-Peer Architecture for Liberalized Markets

Jochen Dinger

University of Karlsruhe (TH)
Institute for Telematics
DSN Research Group
Prof. Dr. Hannes Hartenstein
Topics

• Project SESAM – Overview

• SESAM Subproject 4 – Architecture

• Current Work
Project SESAM – Overview
Project context – Internet Economy

• Project framework on Internet Economy funded by the Federal Ministry of Education and Research (BMB+F)
• 7 Projects in different Universities in Germany with industry partners
• Projects spanning working groups (e.g. WG P2P)

• For more information see: http://www.internetoekonomie.net
Project SESAM

• **SESAM** means:
 Self-Organization and Spontaneity in liberalized and harmonized Markets

• Three interwoven topics of Internet Economy
 – Technology – Self-Organizing Networks (P2P)
 – Economy – Spontaneous Activities, Energy Market, Wearable Services
 – Legal factors – Valid Contracts

• Long term project – at least until end of 2007
SESAM – Project Members

- Multidisciplinary project team - members:
 - Institute for Program Structures and Data Organization
 - Prof. Dr. Lockemann
 - Institute of Mathematics
 - Prof. Dr. Zitterbart, Prof. Dr. Juling, Prof. Dr. Hartenstein
 - Institute of Applied Informatics and Formal Description Methods
 - Prof. Dr. Schmeck, Prof. Dr. Studer
 - Institute of Industrial Production
 - Prof. Dr. Rentz
 - Institute of Information Engineering and Management
 - Prof. Dr. Weinhardt, Prof. Dr. Geyer-Schulz
 - Institute of Information Law
 - Prof. Dr. Dreier, Prof. Dr. Sester
SESAM Subprojects

- TP1: Electronic Contracting - Law
- TP2: Spontaneity, Transparency & Incentives – Economy
- TP3: Optimization, Control & Business Models – Economy
- TP4: Architecture – Technology
SESAM – Scenarios

• Core: Self-organizing Infrastructure
• Scenarios with increasing complexity
 – Role change
 – Highly dynamic
Scenario: Multi-Utility-Market

- **Roles**
 - Producer
 - **Reseller**
 - Consumer

- **Utilities**
 - Electricity
 - Water
 - Gas

- **Goals**
 - Bundling of goods
 - Optimization
 - Find bids
 - Create bids
 - Contracting
Scenario: Virtual power plants

Today: “Peer-to-Peer”
“Client-Server”
Distributed Generation

• Role Change
SESAM Subproject 4 – Architecture
Subproject 4 - Architecture

- Goals
 - Security
 - Authentication and Authorization
 - Encryption & Signing
 - Non-repudiation
 - Anonymity, Pseudonyms
 - Privacy issues
 - Robustness
 - Availability, Reliability
 - Stability
 - Self-Organization

System design

Evaluation of sec.&robust. threats
Architectural requirements

- Requirements:
 - Self-Organization
 - Spontaneity
 - Manipulation-free, Discrimination-free

Peer-to-Peer architecture

- Extensible – Integration of new functionality
- Re-Use of components

Service-Oriented architecture
Service Orientation (1)

- All functionality is encapsulated and accessible through a well known interface
- “Everyone” can implement and integrate new services
- Service Description Language: WSDL
- Integration within Applications: Stubs
- Inter-Service message format: SOAP
Service Orientation (2)

- Functional separation of services
 - Core services
 - High degree of Re-use
 - Examples:
 - Document Service
 - Authentication Service
 - Protocol Service
 - ...
 - Application specific services
 - Use Core services
 - Examples:
 - Bid Optimization Service
 - Contracting Service
 - Legal Mediator Service
 - ...

Re-use

App. specific
P2P – Overlay Network

- Integration of multiple overlay networks
 - CAN
 - Chord
 - Pastry
 - Flooding
 - …

 Which one is good for which service?

- Optimization and Reorganization of the overlay

- Abstraction from P2P-Framework
Combining Services and P2P

- Service specific overlays
 - E.g. document service uses flooding mechanism (1. approach)

- Decentralized service Discovery and Registration

- Offering multiple communication types:
 - Unicast
 - Anycast
 - MultiCast
SO - P2P - Architecture

Service Consumer/Provider
- Doc
- Auth
- Med

Add-on Services
- Stub

System access layer
- SOAP - Processor

Service - Discovery, Registry Management

Transport Layer (JXTA)
- "Address resolution"
 - Random
 - Chord
 - Pastry
Current Work
Current work

- Specification of core services
- Evaluation of overlay networks (service dependent)
- Implementing a prototype using existing frameworks
Core Service Example: DocService

• Function:
 – Distribution of documents
 – Search of documents depending on their content

• Constraints
 – Authentication
 – Integrity, Non-repudiation

• Methods
 – publishDoc(document) -> uuid
 – deleteDoc(uuid)
 – searchDoc(query) -> List of documents

• Open question: How can we support multiple user groups?
Overlay Evaluation – Deploying services

• Evaluating the characteristics of overlay networks w.r.t. service requirements (e.g. Pastry, Chord, CAN, …)
 – Addressing types
 – Latency
 – Privacy
 – …

• “Checklist” with requirements of a service

Method for deploying P2P-services
Prototype Implementation

- Using existing Frameworks

- Web Services → Apache AXIS
 - WSDL2Java for Stub Generation
 - Java2WSDL for WSDL Generation
 - Processing SOAP-Messages
 - Implementation of new Transport Handlers

- Peer-to-Peer → JXTA
 - Core messaging functionality
 - Implementation of Overlays Organizations
General P2P research topics

• Authentication & Trust Models
 – Can we use WS specifications to establish Security and Trust in a P2P network?

• Privacy Model
 – How can we describe Privacy? P3P, EPAL?

• Policy Enforcement (Security, Privacy)
 – Can we enforce Policies without central entities?

• Transactions
 – How can we support transactions in P2P network?

• Uniqueness and Versioning of Services
 – “Everyone” can create new Services => How can we describe their functionality and therefore guarantee their uniqueness?
Questions - Discussion

Any questions?

Contact:

Jochen Dinger
University of Karlsruhe (TH)
Institute for Telematics
DSN Research Group
Prof. Dr. Hannes Hartenstein

dinger@tm.uni-karlsruhe.de
http://dsn.tm.uni-karlsruhe.de