
Characterization of the Bitcoin
Peer-to-Peer Network (2015-2018)

Till Neudecker

Institute of Telematics, Karlsruhe Institute of Technology, Germany
till.neudecker@kit.edu

Abstract. Based on measurements performed between 2015 and 2018
we provide a characterization of the Bitcoin P2P network. The character-
ization enables the parametrization and validation of simulation models
and the assessment of the reliability of real-world experiments. Further-
more, the network characterization provides insights into the behavior of
peers and their operators. For instance, we provide evidence that Sybil
events happened in the past in the Bitcoin P2P network. Additionally,
our measurements show that the performance and anonymity of trans-
action and block propagation has been improved by implementation and
protocol changes.

Please note: This a a slightly edited excerpt from the publicly available1 dis-
sertation Security and Anonymity Aspects of the Network Layer of Permission-
less Blockchains [16]. This excerpt is intended as a reference for the collected
dataset on the Bitcoin peer-to-peer network, which is published at https:
//dsn.tm.kit.edu/bitcoin.

1 Introduction

The Bitcoin P2P network is real-world phenomenon, which is used as a basis for
processing financial transactions in the range of several billion Euros per day.2

Its structure and behavior is subject to continuous variation and is influenced
by numerous internal and external factors. First, the usage of Bitcoin on the
application layer (i.e., the creation of transactions by users) varies, thus the
information propagated through the network varies. Furthermore, the behavior
of those users operating their own Bitcoin peer influences the network, e.g., by
creating churn. Many client implementations that are used to connect to the
network are actively developed and, therefore, their behavior changes over time.
Finally, the underlying network infrastructure, which influences IP routes and
network latencies, varies over time.

There are several reasons, why a characterization of the network is required
in order to perform research on the network layer of permissionless blockchains.
First, in order to perform simulations that produce results, which are applicable

1 http://dx.doi.org/10.5445/IR/1000089033
2 https://blockchain.info/de/charts/estimated-transaction-
volume-usd

https://dsn.tm.kit.edu/bitcoin
https://dsn.tm.kit.edu/bitcoin
http://dx.doi.org/10.5445/IR/1000089033
https://blockchain.info/de/charts/estimated-transaction-volume-usd
https://blockchain.info/de/charts/estimated-transaction-volume-usd


to the real-world system, the simulated network should resemble the real-world
network. Therefore, a model of the real-world network has to be created. Sec-
ondly, even when performing experiments directly in the real-world network, an
ongoing characterization of the network is required to assess the reliability of the
performed experiments. For instance, in order to avoid experiments being per-
formed during periods with very unusual user or network behavior, an ongoing
characterization is required. Furthermore, an ongoing network characterization
helps in monitoring the effects of changes to client implementations. For instance,
if changes are made, which aim at reducing propagation delays, the comparison
of the observed propagation delay at different points in time can help monitor-
ing the success of the implemented modification. Finally, by characterizing the
network, insights on the human activity, which in the end creates the network,
can be gained.

In this paper we will first describe the methodology used to characterize
the network. Then, the network is characterized regarding its general, long-term
properties. Finally, an analysis of a selection of unusual events and a discussion
is presented.

2 Methodology

In order to characterize the Bitcoin P2P network, observations from the opera-
tion of the network have to be made. Without access to link level data between
remote peers of the network (e.g., obtained by packet sniffing at ISPs or internet
exchange points), participating in the P2P network with a modified client is a
common way to make observations from the network’s operation. We will now
describe the system architecture and software design used to participate in the
network and perform measurements. Furthermore, a description of the collected
data and the accessibility and usage of the collected data is given.

2.1 Architecture & Software

The main idea of our measurement system is to run a modified client (monitor
peer), which connects to all reachable remote peers and observes and logs the
announcements of transactions and blocks made by other peers. One important
principle in the design of our measurement infrastructure is to minimize the
effect we have on other peers of the network. Specifically, we aim to reduce
resources like bandwidth and processing power required by other peers to serve
our measurement infrastructure. We acknowledge that while we participate in
the network, we do not provide any service directly to the network and only
consume resources.3 Scaling our approach to a large number of monitor peers
to obtain more measurements could be considered a DoS attack on the network.
We also chose to make our monitor peer not reachable by other peers, to avoid

3 This behavior is quite common in public P2P networks, such as filesharing systems,
and often referred to as free-riding (e.g., [7]).



Table 1. Measurement system parameters.

Parameter Value Comment

Connection Limit ∞ Original: 125

GETADDR interval 2 minutes For complete network
Initial connection backoff 10 seconds After first failed connection attempt
Backoff increment 10 seconds Per failed connection attempt
Connection retry count 5
#Connection threads 50
Failed connection blacklist 6 hours Prevent connection attempts

PING Interval 2 minutes Per peer

other (non-reachable) peers to establish connections to our monitor peers, which
do not provide any service to them.

The monitor peer has several functional and non-functional requirements.
First, it needs to be able to establish and maintain connections to several thou-
sand Bitcoin peers. In order to do that, it also needs to discover IP addresses of
remote peers to connect to. Furthermore, it has to monitor and persistently log
inbound messages from its neighbors. Finally, it should measure the latency to
remote peers, which is a parameter usually required to perform network simula-
tions.

In addition to these functional requirements, there are also non-functional
(i.e., performance) requirements. First, the discovery of reachable IP addresses
and the successful establishment of connections should be fast. This is especially
important, because the number of reachable peers is much smaller than the
total number of IP addresses obtained through the peer discovery mechanism.
Furthermore, the monitor peer has to be capable of processing and storing a large
amount of inbound data (in the range of several gigabytes per hour). Finally,
inbound messages have to be timestamped precisely, i.e., the logged time of
reception of a message should be close to the actual reception of the message on
the wire.

We rejected the option to write a monitor client implementation from scratch,
because of the required effort. Instead, we chose to base our monitor peer im-
plementation on the Bitcoin reference client implementation bitcoind (version
0.10) to ensure compatibility of our monitor peer with other peers. We will now
describe the changes made to the client implementation in order to satisfy all
requirements listed above.4 Furthermore, we will describe the used parameters,
which are also summarized in Table 1.

Connection Limit The maximum number of connections in bitcoind is limited
by two independent factors. First, the number of connections is limited to 125
by default by a configured constant value, which we simply removed. Secondly,

4 Many aspects of bitcoind have been changed in newer releases of bitcoind. Therefore,
the following description only applies to bitcoind version 0.10.



bitcoind 0.10 uses the POSIX select API5 in order to access its network sock-
ets. However, select only supports up to 1024 sockets, i.e., the total number
of connections is limited to 1024. While later versions of bitcoind abandoned
the select API in favor of a completely asynchronous software architecture,
we opted for a less invasive change and replaced select by the epoll system
call. epoll provides a similar interface as select, and allows more than 1024
concurrent connections.

Peer Discovery & Connection Attempts In order to receive IP addresses of other
peers to connect to, a client can send GETADDR messages to its neighbors, which
in turn respond with a list of up to 1000 IP addresses. The interval with which
our monitor peer sends out these GETADDR messages is a tradeoff between the
number of available IP addresses (and, therefore, the number of connections that
can be established) and the effort (e.g., bandwidth usage) created at remote
peers. In accordance to our principle of minimizing the effect on other peers, we
configured our monitor peer to send on average one GETADDR message every 2
minutes to one of the connected peers (i.e., at 10,000 connected peers, one peer
receives one GETADDR message every 2 weeks on average). Because IP addresses
are also announced unsolicited by other peers, the configured request frequency
turned out to be sufficient to supply enough IP address for the establishment of
connections.

Received IP addresses are stored in a local database and used for connection
requests. The strategy used for the establishment of connections has to account
for several aspects: First, only a very small share of the announced IP addresses
are actually reachable (e.g., because peers are located behind NAT routers or
peers terminating their client), i.e., a large number of connection attempts has to
be made for a small number of successful connection establishments. Secondly,
even reachable peers can be temporarily not reachable, because the remote peer
already has hit its own configured limit on the number of connections. Finally,
connection attempts should be rate limited in order to avoid being classified as
abusive traffic and in order to conform to the principle of least effect on other
peers.

We implemented the connection establishment strategy as a parallelized sys-
tem using a configurable number of threads, which continuously try to establish
connections. Rate limitation is implemented as a linear backoff, i.e., the minimum
interval between two connection attempts increases with every failed connection
attempt by 10 seconds. After a certain number of failed connection attempts, an
IP address is removed from the database and blacklisted for a certain duration.
The IP address will be added once the blacklist period expired and it is again
announced by another peer. The strategy has many configuration parameters
listed in Table 1, which all balance the speed of connection establishment and
the bandwidth usage of our monitor peer and of other peers. The operation of
the monitor peer shows that a high degree of parallelization (e.g., 50 threads
establishing connections) is beneficial for a fast establishment of connections.

5 http://man7.org/linux/man-pages/man2/select.2.html

http://man7.org/linux/man-pages/man2/select.2.html


Contrary, the minimum interval between connection attempts as well as the
maximum number of connection attempts was set quite low (e.g., 10 seconds
initial backoff, at most 5 connection attempts).

Message Logging The main message type that is monitored by our monitor
peer are INV messages, which announce blocks and transactions by their hash
value. In order to estimate propagation delays, a precise timestamping of these
messages is required. Therefore, it is important to avoid any processing delay
between the reception of a message and its timestamping. bitcoind 0.10 sepa-
rates the processing of messages into two threads: ThreadSocketHandler reads
incoming data from the sockets into queues for later processing by ThreadMes-
sageHandler. We chose to keep this software architecture, as it enables a fast
timestamping directly after reading a message from the socket in the Thread-
SocketHandler. In order to avoid any delays in ThreadSocketHandler, we also
removed any functionality that requires the acquisition of locks, which might be
held by slower threads.

ThreadMessageHandler processes the messages written into queues for each
neighbor peer. INV messages are directly written to permanent storage in binary
format containing the announced hash value, the announcing IP address, and
the timestamp as set by the ThreadSocketHandler. ADDR messages are used as
input to the modified peer discovery mechanism (see above). PING messages
trigger PONG replies according to the protocol specification, in order to prevent
connections from being closed. The processing of all other message types has been
removed to avoid unnecessary delays and complexity. All further processing of
the measured data is done independently from the monitor peer.

Latency Measurement Our monitor peer uses three distinct methods for the mea-
surement of latencies to remote peers. First, the Bitcoin protocol PING/PONG
messages are used to measure the time between sending a PING message and
receiving a PONG message. One advantage of these messages is that all peers
respond to these messages. Because the messages are handled by the Bitcoin
client itself, this method measures not only the network link latency, but also
the delay introduced by the client software such as processing times and waiting
times for the acquisition of locks. The second method we use is sending ICMP
echo messages. In contrast to the Bitcoin protocol PING messages, responses
to ICMP messages are sent by the underlying operating system, hence no ap-
plication delays are introduced.6 One drawback of ICMP echo messages is that
a substantial number of peers do not respond to ICMP echo messages because
of firewalls or network stack configuration. Therefore, the third method we em-
ploy are TCP SYN pings: A TCP SYN packet is sent to a peer’s port running
Bitcoin and the time until either a RST or a SYN/ACK packet is received is
measured as a round-trip time. This method is commonly used by network scan-
ners (e.g., nmap), and has the advantage that almost all peers respond to TCP
SYN messages.

6 Delays can be introduced by the operating system, if the complete system is oper-
ating at full capacity.



All three methods are implemented within the monitor application as three
additional threads, which regularly send all types of pings to remote peers and
monitor the reception of the responses. In order to avoid storing the sending time
of all sent ping messages, the sending time of the messages are stored in the ICMP
payload and in the TCP sequence number, respectively. The measured round-
trip times of all methods are stored as-is, i.e., no aggregation or combination is
performed during the monitoring process, as such processing can be performed
later in the analysis process (cf. Section 3.3).

2.2 Dataset

We will now describe the acquired dataset. Measurements initially started in July
2015, however, several features of the monitor peer were added subsequently. As
of April 2018, the measurements are ongoing. During the observation period
there are several short measurement gaps, e.g., because of maintenance events,
network outages, and system restarts. Furthermore, there is one larger measure-
ment gap (December 21st 2015 until January 29th 2016) due to a unrecoverable
disk system failure. As of April 2018 the total amount data accumulates to
around 12 terabytes per monitor peer, i.e., 24 terabytes in total.

Aggregated data including continuously generated statistics have been made
available to the research community7 under a Creative Commons license.8 Fur-
thermore, anonymized snapshots of the network are provided. The data has been
used in several scientific publications, e.g. [13,8].

Our monitor peers collect data from four different categories. We will now
briefly describe the collected raw data.

Churn The collected churn data consists of tuples containing the current times-
tamp, the IP address of the remote peer, and the event to be logged. Logged
events are the establishment of a connection, the closing of a connection, and the
reception of a version message from a remote peer. Since April 2016, the logged
version event also contains the announced client version string. Furthermore,
since April 2016 the monitor peers also regularly log the set of all connected
peers. Since May 2017 the logged version event additionally contains the an-
nounced services and version bits.

Latency As described above, the monitor peers regularly send various types of
ping messages to their peers. The collected data consists of tuples containing
the current timestamp, the IP address of the remote peer, the type of the ping
message, and the measured latency. For every reception of a pong message, such
a tuple is created. Failed ping attempts, i.e., sending a ping message without
receiving a corresponding pong message, are not logged.

7 https://dsn.tm.kit.edu/bitcoin
8 https://creativecommons.org/

https://dsn.tm.kit.edu/bitcoin
https://creativecommons.org/


INV The reception of INV messages is logged as tuples consisting of the current
timestamp, the IP address of the remote peer, and the announced hash value.
While one INV message can announce multiple single hash values, each hash
value is logged individually, but with the same timestamp.

ADDR The reception of each ADDR message is logged using the the current
timestamp, the IP address of the remote peer, and the list of announced IP
addresses including the nTime parameter for each announced address.

3 General Network Properties

We will now describe and discuss the long-term results of our measurements since
July 2015. A detailed analysis of certain short-term events will be presented in
Section 4.

3.1 Connections

We will first analyze properties of the connections established to other peers,
specifically, the number of established connections, the connection duration, and
the churn.

Connection Count The number of peers participating in a P2P network is of
interest, because it indicates user adoption of the system and is also important
when assessing the possibility of certain types of attacks on the network. Because
we can only connect to reachable peers, we do not know the total number of
peers on the Bitcoin P2P network. However, the number of reachable peers can
be approximated by the number of established connections by our monitor peers.

Fig. 1 shows the number of connections maintained by our monitor peers
between July 2016 and April 2018. For earlier dates, the number of connections
can only be unreliably approximated, because of missing data.9 The plot shows
the number of IPv4 and IPv6 connections, and the total number of connections,
which is the sum of IPv4 and IPv6 connections. Furthermore, the number of
Sybil connections is displayed. Sybil connections refer to multiple established
connections by the same IP address, i.e., the number of Sybil connections is the
difference between the total number of connections and the number of unique
IP addresses we are connected with.10

Data from both monitors overlap generally overlap closely, with only a few
exceptions (e.g., in October 2017). The total number of connections varied be-
tween less than 6,000 connections in late 2016 and around 14,000 connections

9 Until July 2016 only the establishment and closing of connections was logged, which
would be only sufficient to derive the number of established connections, if the
monitor peer was continuously running.

10 Sybil here refers to a very simple and easy to detect form of a Sybil attack. Of course,
a single person running a large number of peers with different IP addresses would
still be considered a Sybil attack, but would not be detected that easily.



0

2000

4000

6000

8000

10000

12000

14000

16000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

Total
IPv4
IPv6
Sybil

Fig. 1. Measured number of connections between July 2016 and April 2018 for both
monitor peers. The same line colors are used for both monitor peers, because of pre-
dominantly overlapping graphs.

in 2018. The number of IPv4 connections increased at a relatively constant rate
during 2017 (with the exception of a few peaks). The number of IPv6 connec-
tions increased from less than 2,000 to 4,000 until September 2017, but started
to oscillate between 4,000 and 2,000 connections. This oscillation is caused by
IPv6 tunneling protocols, as we will discuss later (cf. Fig. 6).

The number of Sybil peers is generally very low (less than 50 prior to July
2017, less than 200 after August 2017), with the exception of short events in
June 2017 and August 2017. We will discuss these events in detail in Section 4.1.

In order to assess the validity of our measurement, we compare our results to
available results obtained by independent measurements. We are aware of two
projects, which perform similar measurements: Bitnodes11 uses a Python based
monitor implementation12 to connect to peers of the Bitcoin network. It also ob-
tains IP addresses of reachable peers using the in-band peer discovery mechanism
and establishes connections them. Coindance13 also publishes measurements on
the total number of peers, however, no differentiation for IPv4 and IPv6 con-
nections are made. Furthermore, no information on the used methodology is
provided.

Fig. 2 shows a comparison of the number of connection as measured by us
(KIT ), Coindance, and Bitnodes. The Bitnodes IPv4 connection count follows
very closely the IPv4 connection count measured by us. Even short peaks are
congruent in both datasets. However, the Bitnodes IPv6 connection count shows
a larger deviation to our measurements, with a consistently smaller number of
IPv6 connections reported by Bitnodes (ranging from a minimum difference of

11 https://bitnodes.earn.com/
12 https://github.com/ayeowch/bitnodes
13 https://coin.dance/nodes

https://bitnodes.earn.com/
https://github.com/ayeowch/bitnodes
https://coin.dance/nodes


0

2000

4000

6000

8000

10000

12000

14000

16000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

Total (KIT)
Total (Coindance)
IPv4 (KIT)
IPv4 (Bitnodes)
IPv6 (KIT)
IPv6 (Bitnodes)

Fig. 2. Comparison of the number of connections according to our measurements
(KIT ), and the number of connections reported by Coindance and Bitnodes.

200 in Feb 2017 to a maximum difference of more than 2,000 connections during
summer 2017 and January 2018).

The total number of connections reported by Coindance lies between our mea-
sured total number of connections and the number of IPv4 connections. Since
August 2017, the number reported by Coindance is very close to our number
of IPv4 connections, leading to the guess that Coindance only establishes IPv4
connections (or a very small number of IPv6 connections). Until August 2017,
Coindance could have either established a similar number of IPv6 connections
as we and Bitnodes, or Coindance could have established more IPv4 connections
than we did. While there are differences between all three measurements, we
emphasize that all measurements deviate only to a reasonable extend, all mea-
surements reproduce the same general trends, and all measurements show the
same short-term effects.

Churn & Connection Duration Besides the size of the P2P network, the
churn is an important property of P2P networks. Peers entering and leaving
the network can be a representation of user behavior [11]. However, we cannot
directly measure churn, as connections established between two remote peers are
not observable to us. The only events we can observe, are the establishment and
closing of connections to or from our monitor peers. These events, however, can
be used to gain insights on the churn of the network.

One important observation is the duration for which peers stay connected to
our monitor peer. There are two ways to sample this value: First, we can select a
random point in time and create a statistic over the connection durations of all
peers that are connected to our monitor peer at that point in time. Secondly, we
can consider a time interval and create a statistic over the connection durations
of all peers that were connected during that period. Both approaches differ in
the statistical population, with long connection durations dominating the first



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

S
h

ar
e

o
f

C
o

n
n

ec
te

d
P

ee
rs

≥1 min
≥1 hour
≥1 day
≥1 week
≥1 month

Fig. 3. Share of connected peers with a connection duration longer than one minute,
hour, day, week, or month, respectively. Every data point shows the average per day
(48 measurements). The lines show moving averages over the range of one month.

population, whereas short connection durations dominate the second popula-
tion. Furthermore, the composition of the second population depends on the
considered time interval. Therefore, we chose to sample the connection duration
of peers connected at distinct points in time.

Fig. 3 shows the share of peers connected for at least a certain duration to our
monitor peer since July 2016. Each data point is the average of 48 measurements
(i.e., 24 measurements per day for two monitor peers), the lines are moving
averages over a period of one month. Consistently, around 99 % of peers are
connected for at least one minute. Between 90 % and 95 % of connected peers
are connected for at least one hour. The average share of peers connected for at
least one day varies between 55 % and 75 %, the share of peers connected for at
least one week varies between 20 % and 50 % Finally, between 0 % and 20 % of
connected peers are connected for more than one month.

The large variance in the share of peers connected for more than one month
is caused by the regular loss of connections because of system restarts or network
outages. After such an event, it takes one month until peers are connected for
one month again. Therefore, the share of peers being connected to the Bitcoin
network for more than one month, can be expected to be close to the maximum
observed share (i.e., around 20 %).

Compared to measurements of churn in P2P networks primarily used for file
sharing (e.g., Kademlia [11]), many peers are connected to the Bitcoin network
for a very long duration. This indicates that running a peer is not directly as-
sociated with user activity in Bitcoin. Users of file sharing systems usually run
their clients on their desktop computers, start the client when downloading a
file, and quit the client after finishing the download. In contrast, operators of
Bitcoin peers often seem to continuously run their clients on hosted machines
(cf. Fig. 8). Furthermore, while the estimated total number of Kademlia peers



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
o

f
(D

is
-)

C
o

n
n

ec
ts

p
er

H
o

u
r

Connect
Disconnect

Fig. 4. Number of connections established and closed, respectively, per hour. Points
show data averaged per day. Lines show moving averages over the range of one week.

oscillated with a frequency of 24 hours, indicating human behavior, the total
number of Bitcoin peers does not show such an oscillation.

As previously discussed, the used sample method favors connections with
long connection durations. Therefore, Fig. 4 shows the number of connections
established per hour, and the number of connections closed per hour. This gives
a complementary view on churn, because it completely ignores the duration
of connections, but only focuses on the establishment and loss of connections.
Each data point shows the daily average, the lines indicate moving averages
(one week). The average number of established and closed connections per hour,
respectively, varies between a few hundred and several thousand. Furthermore,
the moving averages of connect and disconnect events seem to overlap perfectly
during the displayed interval.

Both observations seem to contradict the previously presented measurements
regarding the total number of connections (which increased from 6,000 and
14,000), and the long durations of connections. However, the results are not con-
tradicting but show different aspects of churn: First, while there is an increase
in the number of connections, it is too small to be visible as a difference in the
number of connects and disconnects at the scale of the shown plot. Secondly, the
majority of connections established by our monitor peers are closed within a few
seconds. Often, connections to one single remote peer are established and closed
on a continuous basis.14 Although only few such connections are established at
any single point in time, they account for the majority of (dis-)connect events.

Client Versions After establishment of a new connection, both clients send a
version message to the remote peer to indicate their version string, their pro-
tocol version number, and their services. The main goal of the exchange of this

14 Remote peers may chose to disconnect from our monitor peer after detecting that
we do not provide any service to them.



0

1000

2000

3000

4000

5000

6000

7000

Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

/Satoshi:0.12.1/
/Satoshi:0.13.2/
/Satoshi:0.14.1/
/Satoshi:0.14.2/
/Satoshi:0.15.0.1/
/Satoshi:0.15.1/
/Satoshi:0.16.0/
/Bitcoin ABC:0.16.1(EB8.0)/

Fig. 5. Number of peers announcing displayed version string for the top eight version
strings between April 2016 and April 2018.

information is to ensure compatibility between both clients of a connection. For
instance, clients that support the Bitcoin Cash fork and are, therefore, incom-
patible with clients supporting the Bitcoin main chain, announce a distinguished
set of services. Furthermore, certain protocol extensions such as Bloom filters [4]
and Segregated Witnesses [12] are encoded in the announced services.

Fig. 5 shows the number of peers announcing a certain client version between
April 2016 and April 2018 for the eight most common version strings during that
period. Except for one version of the Bitcoin ABC client, which supports the
Bitcoin Cash fork, all most common version strings belong to different versions of
the Bitcoin reference client implementation bitcoind, announced as /Satoshi:xx/
(xx denoting the client version number). Whenever new versions of bitcoind
are released, the deployment of these versions at the monitored peers can be
observed. Usually, there is an increase in the number of peers running a new
version in the first two months after the release of the new client version. This
gradual adoption of new client versions is likely caused by peers being operated
by a large number of distinct users. Each user chooses their own time to upgrade
on a new client version based on factors like importance of the update to the
user, available time to actually perform the upgrade, and reluctance to use a
new version because of possible bugs. As these factors are highly subjective and
vary from user to user, the deployment of a new client version takes the observed
time.

Contrary, the number of peers using the Bitcoin Cash client Bitcoin ABC
increased from 0 to more than 700 within one day. A thorough discussion of the
Bitcoin Cash fork will be presented in Section 4.1.

3.2 IP Properties

So far we have only considered information directly obtained from the estab-
lishment and closing of connections to remote peers. Because all connections are



0

500

1000

1500

2000

2500

Jul’16 Sep’16 Nov’16 Jan’17 Mar’17 May’17 Jul’17 Sep’17 Nov’17 Jan’18 Mar’18

N
u

m
b

er
o

f
P

ee
rs

Native
Teredo
6to4

Fig. 6. Number of IPv6 peers using native IPv6, Teredo, and 6to4 between July 2016
and April 2018.

established using TCP and peers are addressed using their IP addresses, the
characterization of the Bitcoin P2P network can also rely on information that
can be associated to remote IP addresses. In the remainder of this subsection
we will look at the usage of IPv6 tunneling protocols, and the countries and
autonomous networks associated with the IP addresses of remote peers.

IPv6 Tunnel In order to allow hosts that are connected only via IPv4 to
communicate with IPv6 hosts, several tunneling protocols exist, with Teredo [10]
and 6to4 [2] being the most prominent ones. The use of both protocols by a
remote host becomes evident, because both protocols use a specified range of
dedicated IPv6 addresses. Therefore, based on the IP address of a remote peer,
we can determine whether the remote host is using native IPv6 or one of the
tunneling protocols for its IPv6 communication.

Fig. 6 shows the number of IPv6 peers using native IPv6, Teredo, and 6to4,
respectively. During the displayed period, the number of native IPv6 peers in-
creases from less than 1,000 in late 2016 to more than 1,500 in 2017 and 2018.
The number of 6to4 peers remains at a low level between 50 and 150. The num-
ber of Teredo peers shows several abrupt rises and declines during the displayed
period. For instance, it increases from less than 100 to more than 1,000 within a
few days in March 2017, falls from more than 2,000 peers to almost zero (around
10) several times in 2017 and 2018, and increases back to more than 2,000 peers.

The increases and drops in the number of Teredo peers correspond to the
observed changes in IPv6 connections in Fig. 1. We will discuss possible reasons
for this observation in Section 4.1.

Countries During the assignment process of IP addresses, information about
the assignee is stored in databases of organizations such as ICANN and RIPE.
This information can be retrieved using the WHOIS protocol [5], in order to



0

1000

2000

3000

4000

5000

6000

Jul’15 Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

US
DE
CN
FR
NL
CA
RU
GB

Fig. 7. Number of peers per country for the eight countries with the most peers.

determine the countries, to which the IP addresses were registered. Although
this information is not 100 % accurate, it gives a reasonable impression of the
geographic distribution of peers among various countries.

Fig. 7 shows the eight countries, with the most peers during the displayed
period from July 2015 until April 2018. Consistently, most peers are located in
the US (ranging from around 1,500 to more than 5,000). Between 500 and 1,800
peers were located in Germany during the observed period. The number of peers
located in China increased from less than 400 in April 2017 to more than 2,500
in April 2018.

As peers from the US account for roughly one third of all reachable peers,
and many peers are located in Western Europe, the geographical and politically
distribution of peers can be regarded as somehow centralized, although there are
peers from other continents as well.

Autonomous Systems For internet routing purposes, a set of IP addresses
under a single technical administration (e.g., under the control of one ISP) is
grouped into one autonomous system (AS) [9]. The AS of an IP address can be
resolved using BGP data or using the WHOIS protocol.

Fig. 8 shows the number of peers per AS for the eight most common AS’s.
As of April 2018, the two AS’s with the most peers both are assigned to Chinese
ISPs (Chinanet and Alisoft). The number of peers in the Chinanet AS increased
from zero in January 2018 to more than 1,200 within less than two month. All of
the Chinanet peers (with the exception of two peers) are announcing the same
client version (Satoshi 0.15.1), which leads to the guess that those peers are
administrated by one single party. The AS with the third most peers (AT-88-
Z) is assigned to the US based company Amazon. The number of peers in the
Amazon AS shows some short peaks, e.g., in June and November 2017.

The data shows that a large number of peers is located at cloud and host-
ing providers, i.e., many peers are run on hosted servers and not at home. For



0

200

400

600

800

1000

1200

1400

1600

Jul’15 Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

CHINANET-JS
ALISOFT
AT-88-Z
OVH
CONTABO
GOOGLE-CLOUD
OVH-200141d00000
LINODE-US

Fig. 8. Number of peers per AS for the eight AS’s with the most peers.

40

50

60

70

80

90

100

110

120

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

A
ve

ra
g

e
M

ed
ia

n
L

at
en

cy
[m

s]

BTC Ping
ICMP/SYN Ping

Fig. 9. Average median measured latency from monitor peers to remote peers.

instance, the largest AS from the ISP Verizon only has 72 peers.15 In general,
the data shows a similar centralization as seen on the country level, but on a
more fine grained level and focusing on internet structure instead of political
structure. It has been shown that this AS-level centralization makes the Bitcoin
P2P network vulnerable to routing attacks [1].

3.3 Latency

Besides properties of the remote client and their IP addresses, our monitor peers
also perform regular estimations of the latencies to their neighbors. As previously
described, latencies are measured using Bitcoin protocol ping messages, ICMP
echo messages, and TCP SYN messages.

15 Verizon manages a large number of different AS’s, which might reduce the number
of peers per AS.



0

50

100

150

200

250

300

0 5000 10000 15000 20000

L
at

en
cy

[m
s]

Distance [km]

ICMP/SYN Ping
BTC Ping
Speed of Light in Fiber

Fig. 10. Average measured latency per remote peer w.r.t. distance to remote peer.
Data from 1st July 2017. Furthermore, the speed of light in fiber (200.000 km/s) is
displayed.

Fig. 9 shows the development of the average median latency from July 2015
until April 2018: First, the median of all measured latencies within one hour
(typically 30 to 60 single measurements) of each peer is calculated. Then, the
average of these medians over all peers is calculated and displayed as one data
point in the plot. Finally, the lines show moving averages over one month of
data points. Measured latencies using the ICMP echo method and using the
TCP SYN method are regarded as one measurement, because of their similar
handling by the operating system network stack, and their resulting similar
measured latencies.

The measured latency using ICMP/SYN remains relatively constant between
50 ms and 60 ms until October 2017. From October 2017 until April 2018, the
observed latencies as well as their variance increase drastically. We will now
discuss possible reasons for this increase in the measured latency.

First, the measured latencies seem to originate from a bimodal distribution:
While many data points still show a latency of about 60 ms, other data points
indicate latencies of more than 100 ms. A closer look into the collected data
reveals that starting in September 2017, the measured latencies strongly vary in
the course of a day, with high measured latencies during working hours (around
6am to 6pm, weekdays only), and low measured latencies at night. Because both
monitor peers show the same behavior and run on different hardware, we can
exclude a saturation of the monitor peers itself as the cause of the increased
measured latency. Furthermore, we also see the effect of an increased measured
latency to peers that are topologically close to our monitor peer, e.g., a peer
located at the University of Erlangen, which is connected with KIT directly
through the German National Research and Education Network (DFN). Hence,
we suspect that saturation of the KIT network may cause the increased observed
latency.



Fig. 9 also shows that the latencies measured using Bitcoin protocol pings
increased much less since October 2017. In contrast to ICMP and TCP SYN
packets, these messages are transmitted through an existing TCP connection.
Upon reception of a packet, stateful firewalls usually try to match packets to an
existing connection, which can be done very fast. If no such connection exists,
the firewall has to evaluate the packet against its ruleset, which can be much
slower. Therefore, a saturation of the ruleset evaluation of a stateful firewall at
KIT could cause the observed effect. We contacted the technical staff in charge
of the network infrastructure at KIT, however, no data was available to confirm
our observation.

The latency between two hosts on the internet is the sum of all processing
delays of all routers on the path between and the hosts, and the transmission
delays of all links between routers. A lower bound on the possible latency between
two hosts can be calculated as the quotient of the distance between both hosts
and the speed of light in fiber. Fig. 10 shows the average measured latency for
every remote peer depending on its distance to our monitor peers in Karlsruhe,
Germany. The location of remote peers is obtained using the Maxmind GeoIP
Database.16 Furthermore, the speed of light in fiber (200.000 km/s) is displayed.

As can be seen, a small number of peers seem to have a latency that is lower
that what is physically possible. There are two possible reasons for these errors:
First, the distance estimation can be wrong, caused by a wrong mapping between
IP address and location. As IP address ranges are frequently transferred between
ISPs, such inaccuracies are quite common.17 Secondly, we cannot exclude the
possibility of wrong measurements.

Fig. 10 also shows that the latency to many peers is only slightly larger than
the physically possible minimum latency. This means that the overall latency
to these peers is dominated by the limited propagation velocity, and not by
processing delays or queuing times. This observation is coherent to our previous
observation that many peers are hosted at hosting providers and not connected
via consumer ISPs, where a larger effect of the last mile, i.e., the communication
link to the consumer’s home, could be expected.

3.4 Propagation of Transactions and Blocks

So far we have only focused on (derived) properties of remote peers, but not
on the behavior of the peers and the network in general. We will now look at
the announcement and propagation of information (i.e,, transaction and blocks)
over the Bitcoin P2P network.

INV Announcements per Hour Fig. 11 shows the total number of received
INV announcements per hour per monitor peer since July 2015. One INV an-
nouncement means the announcement of a single hash value, multiple of which

16 http://dev.maxmind.com/geoip/
17 https://www.maxmind.com/en/geoip2-city-database-accuracy

http://dev.maxmind.com/geoip/
https://www.maxmind.com/en/geoip2-city-database-accuracy


0

5× 107

1× 108

1.5× 108

2× 108

2.5× 108

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

O
b

se
rv

ed
IN

V
A

n
n

o
u

n
ce

m
en

ts
p

er
H

o
u

r

C
o

n
fi

rm
ed

T
ra

n
sa

ct
io

n
s

p
er

D
ay

TX
INV

Fig. 11. Total number of observed INV announcements per hour per monitor peer from
July 2015 until April 2018. For comparison, the number of confirmed transactions (i.e.,
the number of transactions included in the blockchain) is also displayed.

can be announced within one single INV message. The lines indicate moving av-
erages over the time interval of one week. In addition to the number of received
INV messages, Fig. 11 also shows the number of transactions included in the
blockchain per day.

Every valid transaction published on the network should be announced by
every peer to all of their neighbors. Therefore, the number of received INV an-
nouncements should be equal to the number of published transactions multiplied
by the number of connections (cf. Fig. 1). As can be seen from the plots, this
relationship roughly holds.18 In detail, the relationship does not hold because of
several reasons: First, peers may stay passive and not announce transactions at
all to our monitor peer. This behavior can be observed for several hundred peers.
Secondly, peers may also announce a single transaction hash more than one time.
This behavior can be observed for around 50 peers. Peers may also come to dif-
ferent decisions whether transactions should be forwarded or not, depending on
the fee specified in the transaction, or depending on the used scripts. Further-
more, a transaction may be published on the P2P network, but not included in
the blockchain, e.g., because its fee is too low.

During the considered time interval, the number of received INV announce-
ments varied between less than 30 million per hour in 2015, and more than 150
million per hour in late 2017. Because of the limited capacity of Bitcoin blocks,
the fee required for transactions to be included in a block increases, if more
transactions are published than can be included in blocks in a timely manner.

18 For instance, there were roughly 260,000 transactions included in the blockchain in
January 2017, i.e., 11,000 transactions per hour. Our monitor peer had around 6,000
connections at that time, hence around 65 million INV announcements per hour can
be expected, which is coherent to the number of received INV announcements.



0

5

10

15

20

25

30

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

S
ec

o
n

d
s

90% Block Percentile
50% Block Percentile
90% TX Percentile
50% TX Percentile

Fig. 12. Bitcoin propagation delay for block and transaction propagation (50 % and
90 % percentiles).

This effect can be seen during the period of in late 2017.19 It was speculated,
whether the large number of transactions was intentionally created, in order to
increase the required fee for transactions to be included into the blockchain.
Furthermore, a relation to the fork of the Bitcoin Cash blockchain is subject of
discussion.20.

Propagation Delay As transactions and blocks are flooded through the net-
work, we can indirectly observe this flooding process by observing the announce-
ments made by remote peers to our monitor peers. Upon reception of an INV
announcement from a remote peer, we can conclude that this peer has previously
received the corresponding transactions or block. However, we cannot precisely
estimate the exact time a remote peer has received a specific message, because of
delays between the reception of messages and their announcement to other peers.
This effect is stronger for transactions, because the announcement of transac-
tions is deliberately delayed by longer periods, whereas blocks are announced
immediately after validation.

A common measure, which reflects the propagation delay in a network, is
the time between the start of information dissemination and the time until a
certain percentage (e.g., 50 %) of peers have received the information. In order
to calculate that value, we use the timestamp of reception of INV announcements
by remote peers as the assumed time of reception of information by the remote
peers. Then, the time between the first reception of an announcement with a
specific hash and the reception of announcements containing that hash value by
50 % of peers is measured. Fig. 12 shows the resulting propagation delays for
blocks and transactions (for 50 % and 90 % percentiles) since July 2015.

19 https://jochen-hoenicke.de/queue/#1,all
20 https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-

network-might-be-under-expensive-spam-attack-f2fa7baab113

https://jochen-hoenicke.de/queue/#1,all
https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-network-might-be-under-expensive-spam-attack-f2fa7baab113
https://medium.com/@deadwing66/cryptoconspiracy-bitcoin-network-might-be-under-expensive-spam-attack-f2fa7baab113


0

2

4

6

8

10

12

Oct’15 Jan’16 Apr’16 Jul’16 Oct’16 Jan’17 Apr’17 Jul’17 Oct’17 Jan’18

S
ec

o
n

d
s

50% Percentile (KIT)
50% Percentile (bitcoinstats)
50% Percentile (bitnodes)

Fig. 13. Comparison of the 50 % block propagation percentile of our measurements
(KIT ), and the measurements performed by bitcoinstats and bitnodes.

Since 2015, block propagation delay has decreased from more than six sec-
onds in 2015 until 50 % of peers have announced a block, to less than one second
in 2018. Consistently, the 90 % percentile decreased from more than 15 seconds in
2015 to around two seconds in 2018. There are two main reasons for this increase
in block propagation speed: First, relay networks, such as FIBRE21, transmit
blocks using forward error correction and UDP communication at transmission
rates close to physical limits (i.e., speed of light in fiber). Secondly, extensions to
the Bitcoin protocol itself enable a faster transmission of blocks by only sending
transactions IDs instead of the complete transaction, which is possible because
most transactions have been previously received by peers through the transac-
tion propagation process [3]. Furthermore, performance improvements in client
implementations (e.g., using hardware optimization for SHA256 hashing) also
decrease the required time to verify new blocks, which reduces overall propaga-
tion delay.

On the other hand, transaction propagation delay decreased until February
2016 (to around one second for the 50 % percentile) and increased since then
to around 5 second for the 50 % percentile. Transaction propagation delay is
mostly caused by deliberately delaying the forwarding of transactions to enhance
anonymity and topology hiding. In bitcoind versions prior to 0.12, a change to
the software architecture rendered the implemented transaction delay mecha-
nism useless, effectively forwarding transactions immediately. bitcoind 0.12 was
released in February 2016 with a modified transaction delay mechanism, which
delayed transaction forwarding by a longer duration.22 These changes are well
reflected in the observed transaction propagation delay, especially in the 90 %
percentile.

21 http://bitcoinfibre.org/stats.html
22 https://github.com/bitcoin/bitcoin/pull/7125

http://bitcoinfibre.org/stats.html
https://github.com/bitcoin/bitcoin/pull/7125


In order to assess the validity of our measurement, we compare our results
to available results obtained by independent measurements. We are aware of
two projects, which perform similar measurements, namely Bitnodes, which was
described in Section 3.1, and bitcoinstats23, which is operated by the authors
of [6]. In contrast to our measurements, Bitcoinstats connects only to 250 to 1,000
randomly selected peers and monitors INV announcements from these peers.

Fig. 13 shows a comparison of the 50 % block propagation percentile for
all three data sources. In order to enhance readability, single data points were
omitted for our measurements, and only the moving average is displayed. No data
prior to April 2016 was available for bitnodes. In general a high correspondence
between all three datasets can be seen: The long-term trend as well as short-term
variations (e.g., a decrease in March/April 2017 followed by an increase in May
2017) are mostly congruent among all measurements.

However, there are also systematic differences in the collected datasets: Until
mid-2017, bitnodes reported the fastest transaction propagation, often around
2 seconds faster than our measurements, which makes a significant difference if
the measurements are 3 or 5 seconds, respectively. The transaction propagation
delay reported by bitcoinstats is only slightly lower than the one observed by
us, and higher than the one reported by bitnodes.

We will now discuss possible reasons for these deviations. All results were
obtained using monitor peers located in Europe, hence, no significant difference
in latencies to other peers should exist among the three measurements. Further-
more, even if measurements were conducted from other continents, the expected
latency difference would be in the range of a few hundred milliseconds (cf. Sec-
tion 3.3), which is not enough to explain the observed differences. As discussed
in Section 3.1, the number of connections differs between our measurements and
the measurement performed by bitnodes. Being connected to a different subset
of peers can make a difference in the observed propagation delay, depending on
how fast each subset of peers forward transactions. However, the monitor peer
operated by bitcoinstats establishes only 250 to 1,000 connections to random
peers and the results are still very similar to the other results. Hence, we sus-
pect that the effect of which peers are selected on the propagation delay to be
negligible.

A possible explanation for the deviating results could be the method of cal-
culating the percentile values from the collected raw data, i.e., all three projects
observe the similar raw data, but might process them slightly differently. Al-
though the calculation of a percentile seems straightforward, there are several
parameters, which can affect the output. The main question is which remote
peers constitute the statistical population. An obvious answer would be to use
the set of connected peers as the statistical population. This approach comes
with several problems: The set of connected peers is not constant over time.
Furthermore, the set of connected peers includes peers that do not announce a
single transaction or block, i.e., that stay completely passive. If more than 10 %
of all connections are to such passive peers, we will not receive INV announce-

23 http://bitcoinstats.com/network/propagation/

http://bitcoinstats.com/network/propagation/


4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

24-Mar’18 25-Mar’18 26-Mar’18 27-Mar’18 28-Mar’18 29-Mar’18 30-Mar’18 31-Mar’18
4× 107

5× 107

6× 107

7× 107

8× 107

9× 107

1× 108

1.1× 108

P
ro

p
ag

at
io

n
D

el
ay

[S
ec

o
n

d
s]

O
b

se
rv

ed
IN

V
A

n
n

o
u

n
ce

m
en

ts
p

er
H

o
u

r50% TX Percentile
INV

Fig. 14. Total Number of observed INV announcements per hour and the 50 % trans-
action propagation percentile between March 24th, 2018, and March 31st, 2018.

ments from 10 % of peers, hence, we cannot even calculate a 90 % percentile.
This means that the statistical population has to be reduced to the set of peers,
which actually announce a new message within a certain interval after the first
observation of a new message. The choice of that interval determines the number
of outlier peers (i.e., peers which announce a hash many seconds, minutes, or
even hours after its first reception) in the statistical population. For instance,
choosing a small interval reduces the number of peers with high propagation
delays, hence reducing the measured percentiles. We suspect that differences in
the choice of parameters cause the deviation between the measurements. We also
emphasize that a propagation percentile is not a directly measured value, but is
derived from measurements, which can be influenced by the measured system,
the measurement, and the derivation method.

While Fig. 12 shows the long-term changes in the propagation delay, there are
also short-term changes caused by varying user behavior. Fig. 14 shows the 50 %
transaction propagation percentile for the duration of one week in March 2018.
The plot shows that the percentile oscillates between 4.8 seconds and 5.3 seconds
with a frequency of 24 hours. Furthermore, Fig. 14 shows the number of observed
INV announcements per hour, which also oscillates between 50 million and 100
million, and correlates to the propagation delay. The minimum number of INV
announcements per hour was observed on a Sunday (March 25th).

Because no such oscillation can be seen in the number of peers, we suspect
that the variation in propagation delay is actually caused by the variation in
network traffic. Please note that while there is an oscillation observable, the
amplitude is very small (i.e., below 200 ms for most days). Such a variation can be
caused by the transaction delay mechanism in bitcoind: The maximum number
of hashes announced in one single INV message is limited to 35. Therefore, if
more than 35 transactions are to be announced to a remote peer, the transactions
in excess of 35 are further delayed, increasing the overall propagation delay.



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

29-Jul 30-Jul 31-Jul 01-Aug 02-Aug 03-Aug 04-Aug 05-Aug

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

Total
IPv4
IPv6
Sybil

Fig. 15. Measured number of connections
around August 1st, 2017 [15].

0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00h

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

Bitcoin ABC:0.14.6(EB8.0)
BUCash:1.1.0(EB12; AD12)
Bitcoin ABC:0.14.5(EB8.0)
Bitcoin ABC:0.14.3(EB8.0)
Bitcoin ABC:0.14.4(EB8.0)

Fig. 16. Announced client version strings
of Sybil peers [15].

4 Case Studies

In the previous section we characterized the Bitcoin P2P network by looking at
the long-term changes of network properties. In addition to the general charac-
terization, we also identified several short-term events, which we will now further
analyze.

4.1 Bitcoin Cash Sybil Peers

The following case study has been previously published as a technical report [15].
As described in Section 3.1, there were several short periods, during which a large
number of connections from a small number of IP addresses could be observed.
One such event took place on August 1st, 2017. This event is of particular inter-
est, because it happened during the fork of the Bitcoin Cash (BCH) Blockchain.24

Bitcoin Cash is a modification to Bitcoin, which allows block sizes to be larger
than 1 MB. Because such blocks are rejected by miners, who follow the tradi-
tional consensus rules, the blockchain permanently forks into two independent
branches.

Fig. 15 shows the total number of connections from our monitor peers be-
tween July 29th and August 5th, 2017. As in Section 3.1, the number of Sybil
peers is calculated as the difference between the total number of connections and
the number of unique IP addresses we are connected to. While the number of
connections is quite constant until August 1st, on August 1st, 2017, the number
of Sybil peers increased to up to 5,000. After a period of about 12 hours, the
number of Sybil peers decrease to almost zero. The total number of IPv4 con-
nections remains slightly above its previous level (from 6,800 IPv6 connections
to 7,400).

Because a relation to the Bitcoin Cash fork seems likely, we analyzed the
version strings announced by the Sybil peers. Fig. 16 shows the number of peers
announcing version strings of Bitcoin Cash clients on August 1st. Bitcoin ABC
as well as BUCash are clients for the Bitcoin Cash system. Most Sybil peers
announced the version string Bitcoin ABC:0.14.6(EB8.0), however, some peers

24 https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-
foot-view/

https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-foot-view/
https://www.coindesk.com/bitcoin-cash-what-expect-fork-10000-foot-view/


0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00h

N
u

m
b

er
o

f
C

o
n

n
ec

ti
o

n
s

AMAZON-02
AMAZON-AES
DIGITALOCEAN-ASN
HETZNER-AS
OVH

Fig. 17. Connections per AS, only AS’s
with most connections shown [15].

0

1000

2000

3000

4000

5000

01-Aug:00h 01-Aug:12h 02-Aug:00h 02-Aug:12h 03-Aug:00h

O
b

se
rv

ed
IN

V
A

n
n

o
u

n
ce

m
en

ts

Fig. 18. Number of INV announcements
received for BCH blocks [15].

also announced BUCash:1.1.0(EB12; AD12) and Bitcoin ABC:0.14.5(EB8.0).
The number of peers announcing Bitcoin ABC:0.14.6(EB8.0) was below 100
before, and at around 400 after the Sybil period.

The fact that the Sybil peers did not all use the same client version string
can be interpreted in multiple ways: First, Sybil peers could be spawned by inde-
pendent parties, using different client versions. Secondly, different client versions
could have been used in order to make the Sybil peers look more natural, i.e.,
caused by normal user behavior. Finally, different client versions could have been
used to prevent a single point of failure caused by a potentially existing bug in
one client implementation.

Fig. 17 shows the change in the number of peers with IP addresses from
the top five autonomous systems during that period. A steep incline in the
number of peers from the AS from Amazon (AMAZON-02 and AMAZON-AES)
during the considered period can be seen. The total number of connections to
peers in Amazon’s AS matches the total number of Sybil peers, i.e., all Sybil
peers originated from Amazon’s AS. This observation suggests that all Sybil
peers were spawned by one single party, although it cannot be excluded that
several parties independently started a large number of Bitcoin Cash clients on
Amazon’s hosting services.

Finally, the question arises what the purpose of the large number of Sybil
peers was. Sybil peers can be used to attack the anonymity of users, or to perform
a DoS attack (e.g., eclipsing) on the network. However, correctly operating Sybil
peers can also support the network and defend the network against attacks by
increasing the number of peers.

Fig. 18 shows how many INV messages announcing each Bitcoin Cash block
our monitor peers received. The first BCH block was mined on August 1st and
announced by 3,583 peers. The following blocks on August 1st were all announced
by roughly 3,500 peers, the blocks on August 2nd were announced by roughly
800 peers. No BCH block was mined during a 13 hour period on August 2nd.
The number of observed INV messages for each block corresponds well to the
total number of Sybil peers. The fact that the Sybil peers actually announced
BCH blocks, suggests that the peers should support the BCH network during
the critical period of the fork. As the total number of reachable BCH peers is
relatively low, a DoS attack on those peers could be easily executed and could
have resulted in a partitioned network. The Sybil peers temporarily increased



the number of reachable BCH peers by a factor of about four. Finally, it is also
possible that the Sybil peers were spawned by mistake, e.g., by misconfiguration
of Amazon cloud instances.

4.2 IPv6 Teredo

As discussed in Section 3.2, the number of connections to peers using the Teredo
IPv6 tunnel mechanism varied abruptly several times, with periods with more
than 2,000 Teredo connections, immediately followed by periods with almost
zero connections to Teredo IPv6 addresses. This raises two questions: First,
what causes the abrupt changes in the number of connections to Teredo hosts?
Secondly, are Teredo peers different from the peers that are connected via IPv4
or via native IPv6?

Before addressing both questions, we will now briefly introduce the Teredo
tunneling protocol [10]. A host (Teredo client) that is connected via IPv4 to the
internet and wishes to communicate with an IPv6 host via Teredo, contacts a
Teredo server, which provides the configuration required for the establishment
of the tunnel. After the establishment of the tunnel, traffic relaying is done by
Teredo relays. Every Teredo client has a unique, routable IPv6 address, which
encodes the IPv4 addresses of the Teredo client as well as the Teredo server.
Furthermore, because IPv6 packets are encapsulated in IPv4 UDP packets, a
traversal of NAT routers is possible.

In order to answer both questions, we analyzed a single snapshot of con-
nections from one monitor peer from January 1st, 2018. At that point in time,
a total of 13,885 connections were established, out of which 2,102 connections
were made to Teredo IPv6 addresses. The 2,102 connections can be mapped to
2,059 unique IPv4 addresses. This means, that only a small number of peers
establish multiple connections via different Teredo tunnels, i.e., we can rule out
attempted Sybil attacks using Teredo tunneling as an amplifier for the number
of IP addresses available as a cause for the abrupt changes in the number of
Teredo connections. Furthermore, out of the 2,059 unique IPv4 addresses, only
239 peers were also connected via native IPv4.

In contrast to the previous case study, the effect does not seem to be caused
by a single instance establishing a large number of connections. Furthermore, we
contacted KIT’s network infrastructure administrator to rule out the possibility
that changes to the local network infrastructure caused the effect. Therefore, we
suspect that the effect is caused by changes to the Teredo tunneling infrastruc-
ture. Interestingly, all 2,102 Teredo connections use only eight different Teredo
servers, all of which are in IP ranges assigned to Microsoft.25 Microsoft an-
nounced in 2013 to sunset its Teredo services and already performed experiments
including temporarily shutting down Microsoft Teredo servers and relays.26 This

25 List of Teredo servers and the number of connections per Teredo server:
157.56.106.184 (504), 157.56.144.215 (444), 157.56.106.189 (392), 157.56.149.60
(288), 94.245.121.251 (270), 157.56.120.207 (146), 94.245.121.253 (57), 65.55.158.118
(1).

26 https://ietf.org/proceedings/87/slides/slides-87-v6ops-5.pdf

https://ietf.org/proceedings/87/slides/slides-87-v6ops-5.pdf


0

0.1

0.2

0.3

0.4

US RU CA CN TH NL DE FR

S
h

ar
e

o
f

P
ee

rs

Teredo
Native

Fig. 19. Share of peers from displayed
country for the set of Teredo peers and
the set of natively connected peers.

0

0.01

0.02

0.03

0.04

0.05

0.06

CHIN
ANET-G

D

VIS-B
LOCK

RRW
E

BEELIN
E

RRM
A

ALISOFT

AT-88-Z

CONTABO
OVH

LIN
ODE-U

S

S
h

ar
e

o
f

P
ee

rs

Teredo
Native

Fig. 20. Share of peers from displayed
ASs for the set of Teredo peers and the
set of natively connected peers.

suggests that the effect is caused by Microsoft performing changes to its Teredo
services.

We will now analyze, whether the Teredo peers differ from the peers con-
nected via IPv4 or via native IPv6. One general limitation of our monitoring
method is that only connections to reachable peers can be established. However,
there is also a presumably large number of peers that is unreachable, about
which we cannot collect information. Because of Teredo’s NAT traversal feature,
the connections established to Teredo peers are mostly connections to peers that
are unreachable via IPv4. As discussed, only 12 % of Teredo peers are also reach-
able via their IPv4 address. Therefore, analyzing the set of Teredo peers allows
a peek into the set of unreachable peers.

Fig. 19 compares the share of peers from certain counties for the set of Teredo
peers and the set of natively connected peers. For both sets of peers, the top
five countries are displayed. While some countries have a similar share among
both sets of peers (e.g., USA and China), some countries show a vastly different
share among Teredo peers and non-Teredo peers: For instance, 14 % of all Teredo
peers are from Russia, but only 3 % of all non-Teredo peers are from Russia. Even
more extreme, around 5 % of Teredo peers are from Thailand, but only 0.4 %
of non-Teredo peers are from Thailand. On the other hand, countries like the
Netherlands, Germany, and France are underrepresented in the set of Teredo
peers.

One reason for these differences might be different IPv6 adoption rates in
various countries and, hence, different strategies used by ISPs to cope with the
limited number of available IPv4 addresses. For instance, according to Google27,
the IPv6 adoption rate is high in the US, Germany, and France. Therefore,
there is little demand for tunneling mechanisms such as Teredo. Contrary, the
IPv6 adoption in Russia is very low at only about 2 %, which might explain the
large number of Russian peers using Teredo. The large number of Teredo peers
from Thailand, however, cannot be explained with Thailand’s IPv6 adoption
rate, which is much higher than Russia’s IPv6 adoption rate (15 %). Possible

27 https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html


0

0.1

0.2

0.3

0.4

0.5

Satoshi:0.15.1

Satoshi:0.15.0.1

BitC
ore:0.14.1.6

Satoshi:0.14.2

Satoshi:0.14.1

Bitcoin ABC:0.16.1

BitcoinUnlim
ited:1.0.3

S
h

ar
e

o
f

P
ee

rs

Teredo
Native

Fig. 21. Share of peers announcing displayed version string for the set of Teredo peers
and the set of natively connected peers.

reasons for the large number of Teredo peers from Thailand include specifics to
the network configuration of Thai ISPs or the operating system configuration of
Thai users.

Fig. 20 compares the share of peers from certain autonomous systems for the
set of Teredo peers with the set of natively connected peers. Interestingly, four
of the top five AS’s for non-Teredo peers (AT-88-Z, Contabo, OVH, Linode) do
not have a single Teredo peers. Contrary, the most prominent AS’s for Teredo
peers are all less common among non-Teredo peers. Furthermore, the share of
the most common AS among Teredo peers (Chinanet-GD), is at 1.6 % much
lower than the share of Alisoft peers among native peers (5.7 %), i.e., Teredo
peers show a higher degree of AS level decentralization.

The top five autonomous systems among Teredo peers are all operated by
ISPs providing consumer internet access (Chinanet, Verizon, Time Warner In-
ternet, Beeline Boradband). Contrary, the top five autonomous systems among
native peers are all operated by cloud hosting providers (Alibaba Cloud, Ama-
zon, Contabo, OVH, Linode). Again, this supports the thesis that Teredo peers
are run on consumer PCs behind NAT. A similar observation has been made in
a previous study focusing on unreachable Bitcoin peers [17]: Here, the top 5 AS
were all common mobile operators (T-Mobile, Comcast, Verizon, and Rogers).

Fig. 21 compares the announced version strings among Teredo and native
peers. Only minor differences the usage of bitcoind (version string Satoshi) can
be seen. BitCore is a client for a Bitcoin fork (BTX) with modified block size,
block generation interval, and mining algorithm.28 While less than one percent
of all native peers run the BitCore client, more than 12 % of the Teredo peers
run the BitCore client. Out of the 370 total peers running BitCore, more than
27 % are from Thailand, which might explain the large share of Teredo peers
among BitCore clients.

28 https://bitcore.cc

https://bitcore.cc


Contrary, the share of clients for the Bitcoin Cash fork (version strings Bitcoin
ABC and BitcoinUnlimited) is much lower for Teredo peers than for native peers.
This is caused by the very large number of Bitcoin Cash peers operated from
cloud services: More than 41 % of all reachable Bitcoin Cash peers are operated
from the Alibaba Cloud. Furthermore, many of these clients seem to be operated
by only a small number of parties, because peers simultaneously join and leave
the network. For instance, on April 13th, 2018, the number of Bitcoin Cash peers
decreased from more than 800 to 375 within three hours.

5 Discussion

The presented results indicate that the observation of large P2P networks is not
only required for the creation of simulation models (cf. [14]), but also delivers in-
sights into the network itself. Specifically, our measurement lead to the following
statements about the Bitcoin P2P network:

– Performance and anonymity improvements to block and transaction propa-
gation manifest in their observed propagation speed.

– Reachable Bitcoin peers are often run in data centers, unreachable (Teredo)
Bitcoin peers tend to be connected via consumer ISPs.

– Bitcoin peers are usually (gradually) upgraded within a few months after
the release of a new client version. The upgrade of Bitcoin Cash clients was
observed to happen within much shorted time intervals.

– Sybil events actually happened in the past.
– Although Bitcoin is a global network, regional differences can be observed,

e.g., in the IPv6 connectivity and in the used client version.

Furthermore, the comparison of our measurement results with other results
indicated a reasonable agreement, however, some deviations cannot be explained
completely. While the causes for some observed effects can be identified with high
confidence, the causes of other effects remain unclear due to a lack of ground
truth data, i.e., data collected at remote peers.

We also like to emphasize the potential of measurement errors: The Bitcoin
network is a decentralized, changing network, which should be the only system
affecting our measurements. However, the measurement systems itself (i.e., mon-
itor hardware, monitor software, local network connectivity) is also subject to
change and can affect the measurements. The latency measurements presented
in Section 3.3 clearly show such an effect of the measurement system, however, it
is generally hard to decide whether an effect is caused by the observed network,
or by the measurement system. Therefore, a larger number of monitor peers
with independent hardware, software, and network connectivity could improve
the reliability of the measurements.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Re-
search within the projects KASTEL IoE and KASTEL ISE in the Competence



Center for Applied Security Technology (KASTEL) and by the state of Baden-
Württemberg through bwHPC, bwFileStorage, and LSDF Online Storage.

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking Bitcoin: Routing attacks on
cryptocurrencies. In: Security and Privacy (SP), 2017 IEEE Symposium on. pp.
375–392. IEEE (2017)

2. Carpenter, B., Moore, K.: Connection of IPv6 Domains via IPv4 Clouds. RFC
3056 (Proposed Standard) (Feb 2001), https://www.rfc-editor.org/rfc/
rfc3056.txt

3. Corallo, M.: Compact block relay (bip 152).
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki (2016)

4. Corallo, M., Todd, P.: NODE BLOOM service bit (bip 111).
https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki (2015)

5. Daigle, L.: WHOIS Protocol Specification. RFC 3912 (Draft Standard) (Sep 2004),
https://www.rfc-editor.org/rfc/rfc3912.txt

6. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on. pp. 1–10. IEEE (2013)

7. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and whitewash-
ing in peer-to-peer systems. IEEE Journal on Selected Areas in Communications
24(5), 1010–1019 (2006)

8. Gupta, D., Saia, J., Young, M.: Proof of work without all the work. In: Proceedings
of the 19th International Conference on Distributed Computing and Networking.
p. 6. ACM (2018)

9. Hawkinson, J., Bates, T.: Guidelines for creation, selection, and registration of
an Autonomous System (AS). RFC 1930 (Best Current Practice) (Mar 1996),
https://www.rfc-editor.org/rfc/rfc1930.txt, updated by RFCs 6996,
7300

10. Huitema, C.: Teredo: Tunneling IPv6 over UDP through Network Address Trans-
lations (NATs). RFC 4380 (Proposed Standard) (Feb 2006), https://www.rfc-
editor.org/rfc/rfc4380.txt, updated by RFCs 5991, 6081

11. Jünemann, K.: Confidential Data-Outsourcing and Self-Optimizing P2P-Networks:
Coping with the Challenges of Multi-Party Systems. KIT Scientific Publishing
(2015)

12. Lobrozo, E., Wuille, P.: Segregated witness (peer services).
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki (2016)

13. Miller, A., Bentov, I., Kumaresan, R., Cordi, C., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning (2017)

14. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the Bitcoin peer-to-peer network. In: 2016 Intl IEEE Conference on
Advanced and Trusted Computing (ATC). pp. 358–367 (July 2016)

15. Neudecker, T.: Bitcoin cash (bch) sybil nodes on the bitcoin peer-to-peer network.
Tech. Rep. 4 (2018)

16. Neudecker, T.: Security and anonymity aspects of the network layer of permission-
less blockchains ([2019]), http://dx.doi.org/10.5445/IR/1000089033

17. Wang, L., Pustogarov, I.: Towards better understanding of Bitcoin unreachable
peers. arXiv preprint arXiv:1709.06837 (2017)

https://www.rfc-editor.org/rfc/rfc3056.txt
https://www.rfc-editor.org/rfc/rfc3056.txt
https://www.rfc-editor.org/rfc/rfc3912.txt
https://www.rfc-editor.org/rfc/rfc1930.txt
https://www.rfc-editor.org/rfc/rfc4380.txt
https://www.rfc-editor.org/rfc/rfc4380.txt
http://dx.doi.org/10.5445/IR/1000089033

	Characterization of the Bitcoin Peer-to-Peer Network (2015-2018)
	Introduction
	Methodology
	Architecture & Software
	Dataset

	General Network Properties
	Connections
	Connection Count
	Churn & Connection Duration
	Client Versions

	IP Properties
	IPv6 Tunnel
	Countries
	Autonomous Systems

	Latency
	Propagation of Transactions and Blocks
	INV Announcements per Hour
	Propagation Delay


	Case Studies
	Bitcoin Cash Sybil Peers
	IPv6 Teredo

	Discussion


